JOURNAL OF COMPUTATIONAL PHYSICS 86, 270-293 (1990)

Compressible Linear and Nonlinear Resistive
MHD Calculations in Toroidal Geometry*

L. A. CHARLTON, J. A. HoLMES, V. E. LYNCH, AND B. A. CARRERAS

Oak Ridge National Laboratory, P. O. Box 2009,
Qak Ridge, Tennessee 37831

AND

T. C. HENDER

Euratom{UKAEA Fusion Association, Culham Laboratory, Abingdon,
Oxon OX14 3DB, England

Received September 19, 1988: revised February 27. 1989

A formalism has been developed and incorporated in the computer code FAR to solve the
magnetohydrodynamic (MHD) equations compressibly or incompressibly for either ideal or
resistive modes. A linear subset or the full nonlinear set of equations can be solved, in toroidal
geometry, with no ordering assumptions. Significant features of the formalism include (1) the
addition of compressibility by adding two equations to a basic incompressible set, (2) the
ability of the code to converge very rapidly for linear calculations, and (3) the use of a
diffusive term in the evaluation of the compressible part of the velocity. This term damps the
short-wavelength waves and allows a time step size which is comparable to that needed for
incompressible simulations. € 1990 Academic Press, Inc.

1. INTRODUCTION

Because of the complexity of the problem, MHD calculations in toroidal
geometry are usually done with some simplifying assumptions. Although exceptions
exist [1], these calculations frequently involve the use of reduced [2] or ideal [3]
equations or an incompressibility assumption [4]. The reduced equations neglect
the toroidal components of the perturbation and thus allow a significant reduction
in the complexity of the equations to be solved. Neglecting resistive effects casts the
problem in a form involving a self-adjoint operator, which allows the use of a W
approach. In a time evolution approach, incompressibility reduces the number of
equations to be time-advanced by two since the time-independent incompressibility
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assumption serves as one equation and the equations can be cast in a form that
does not explicitly require a pressure. In this paper, we report a method for solving
the full MHD equations with resistivity and in toroidal geometry which uses none
of the preceding approximations and which has been implemented in the computer
code FAR.

First, the equations used are developed in Section 2, and the numerical method
is described in Section 3. The boundary conditions are discussed in Section 4. and
the relaxation of the strict nonlinear compressible itime step restrictions is
considered in Section 5. Results are given in Section 6, and the discussicn and
conclusions, in Section 7.

2. EQUATIONS

We begin with the usual MHD equations, namely {in mks units}.
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or compressible (V- -V #0) model assumptions. For the compressible model, 2
pressure evolution equation is used,

and an equation of state can be chosen to satisfy either incompressible {V -V =§;
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where [ is the ratio of specific heats. The incompressible equation of staie s
specified later by Eq. (15).

In our formulation the magnetic field is written in terms of the usual vecior
potential (A) as

B=VxA:

ha

the velocity is expressed as a sum of compressible and incompressible paris as

V=Vx+ Vuw: i€)

and the mass density (p,,) is taken to be a constant. The preceding specification of
the velocity would seem to overspecify the velocity since a three-component vector
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(Q) and a scalar (@) are being used. However, a gaugelike choice is made after
specification of the coordinate system, which will remove the apparent over-
specification.

From Eqgs. (1), (2), and (7), we find that

A
a—at—szB—r]J-}—ch, (9)

where « is the electrostatic potential.
Taking the curl and divergence of Eq. (3) allows the velocity evolution equations
to be divided into incompressible,

%zVX(VxU)+iVx(JxB), (10)
and compressible,
ﬁa_l/tVz —% V2V? 4+ V. (VxU)
Ly lv.axs, (1)
parts, where
W=V.V=Vo (12)
and
U=VxV=Vx(VxQ). (13)

Although Eq. (10) has the form of a vector equation, only two of the components
are independent since

V.U=V-(VxV)=0 (14)

can be used to specify the third component. Still to be specified is the choice of
gauge for the magnetic field and the effective choice of gauge for the velocity field.
This is done below. For the incompressible mode, (9/d1)(V - V) =0, which gives the
effective equation of state as

V2p=v-(JxB)—% VIVi4p V. (VxU). (15)

Thus, for incompressible calculations, Egs. (9) and (10) are solved with Eq. (15)
specifying the pressure (as a diagnostic). In addition, for compressible calculations,
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Eq. (11) gives the compressible part of the velocity evolution, and Eq. (6} defines
the evolution of the pressure. The use of an ideal equation of state is not consistent
with energy conservation since ohmic heating is neglected. The resistivity {n} 15
assumed time independent and is specified by the inverse of the flux surface average
of the toroidal equilibrium current density. No explicit external electric field is
imposed. However, the purely equilibrium resistive terms are dropped which couid
be viewed as the imposition of an electric field.

A nonorthogonal coordinate system is used which is based on the toroidal
equilibrium configuration [ 7] with coordinates p, 6, and { [81. An equilibrium Jux
surface is labeled by p, the poloidal anglelike variable & is chosen so that the
equilibrium magnetic field lines are straight, and the geometric toroidal angle is .
With this definition of the coordinate system, the gauge can now be specified and
is chosen to be

A,=0, {16

with a similar gaugelike constraint on the velocity

PN
Q,=0. SN

Additional details of the coordinate system are given in Ref [8].
With the preceding specifications and the definitions A.= —y {(the poiovda
magnetic flux function), 4,= —y (the toroidal magnetic ﬂux function), .= —

(the poloidal stream function), and Q,= —A (the toroidal stream function}. :he
equations that are solved are (in dimensionless form}:
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V2 in Eq. (23) is equal to V2 above with the toroidal terms omitted.
The vector components of the magnetic field are given by

o L= 27
B 5 X pa()w’ (27
8=y, (28)
ép
1 élpy)
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and the current density components are

o |
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The components of the vorticity are defined as the current density with i
replacing y and ¢ replacing .

In Egs. (18)—(35), all lengths are normalized to a generalized minor radius 2
(defined by @ =R, { R~ dV/(2x*), with integration ovgr the plasma volume). The
resistivity is normalized to #, (its value at the magnetic axis); the time, to the
resistive diffusion time 1, = a’u, /4y, where y, is the vacuum magnetic permeability;
the magnetic field, to B, (the toroidal vacuum field at the plasma major radius &,};
the velocity, to a/t,; and the pressure, to p, (its equilibrium value at the magnetic
axis). R is the major radius coordinate normalized to R,, and S=1,/1,4, is the
ratio of the resistive time to the poloidal Alfvén time [t = Ro(ptop,.)" 7/ Bo]. The
quantities 8, and ¢ are given by B, = po(0)/(B5/2u,) and e=a/R,. In Eq.(23}. 2
term {D V- ) has been added, which is discussed later (D, is normalized to

\

20
asit, ).
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The above equations are solved by initializing with an equilibrium, perturbing it,
and following the development. The equilibrium used is a solution to the basic
Eqgs. (18)—(24) with the time derivative of all quantities set to zero, v=0 and # =0
(we use an ideal equilibrium). This is discussed in more detail in Ref. [4]. Since
axisymmetric perturbed modes (n=0; see next section) are used, quasilinear
equilibrium modifications are included exactly.

For numerical solution, the quantity « in Egs. (18)-(20) is replaced in a
consistent manner by

. [1e N T e
N L

This replacement simplifies some of the terms involved in the solution of these
equations. It also allows the rational surfaces to be identified more cleanly by
placing the relevant operator in one and only one mode. This use of one mode
minimizes problems with round-off errors numerically. From this point on, a* is
referred to as a.

Equations (18)-(24), together with the definitions given by Egs. (25)-(35), give
the equations that are numerically time-advanced in the computer code FAR. For
incompressible calculations, Egs. (18)-(22) are time-advanced and o is zero in the
velocity components given by Eqgs. (33)—(35). Since dw/dt={(3/6t)(V -V) must be
identically zero, Eq. (23) serves as a diagnostic equation to determine the pressure.
For compressible calculations, on the other hand, the full set of equations is used.

The preceding form of MHD equations is particularly useful because of the
natural transition between compressible and incompressible models. It is also very
useful to have direct access to the fast-wave contribution to the MHD equations
(see Section 6). The form used here gives such direct access through Eq. (23) (for
W=V .V). Thus, for modes that do not depend on the details of the fast waves, the
wave motion can be damped or modified directly through Eq. (23).

3. NUMERICAL METHOD

For computations with the computer code FAR, the dependent variables (X) are
separated into equilibrium (X,,) and perturbed (X) parts,

X(p, 0, 0)=Xo4(p, 0) + X(p, 6, ). (36)

The purely equilibrium terms cancel by use of the equilibrium equation, and
only terms that are linear or quadratic in the perturbed quantities remain. They are
expanded in Fourier series in angular variables 0§ and { [9]. Assuming up—down
symmetry of the equilibrium, the perturbed quantities ¥, %, p, and @ can be
expanded in cosine functions,

¥, 0,0)=Y X,.(p) cos(mf + n{), (37)

h.n
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and i, A, and & in sine functions,

X(p.6,0)= Y X,.(p)sin(mb+nl). {38,

n, H

For incompressible calculations, p and o are, of course, omitted.

In the radial direction (p), centered finite differences are used with the provision
for a variable mesh spacing [9]. The equations to be time-advanced can be written
symbolically as

Ged

AédX=BX+X"CX, (3%
where X is the vector of unknowns, A and B are two-dimensional matrices
containing the linear coefficients, and C is a three-dimensional matrix that gives the
nonlinear strength of each quadratic term. Each component of the vector is cne
Fourier component of the unknown evaluated at one of the grid points. The linear
terms are evaluated implicitly by using a time-centered scheme thai allows very
large time steps to be taken for linear calculations (C =0). As discussed in detail in
Ref. [4], these very large time steps give convergence in only a few iterations. The
fime step then becomes a convergence parameter that can be chosen to accelerate
convergence if an approximate value for the growth rate is known, as is usually the
case. The nonlinear terms (C #0) are added explicitly, and nonlinear calculations
must therefore be done with greatly reduced time steps sizes. The step size requirec
for nonlinear compressible calculations is discussed later in more detail. The
Fourier series of Egs. (37) and (38) are truncated, and a finite difference representa-
tion is used in the radial coordinate p with a three-point, centered, uniform spatial,
finite difference scheme. This three-point finite difference scheme gives a block
tridiagonal matrix. Details of the procedure used to set up the blocks and the
method of inverting the large matrices is contained in Refs. [4.6]. This scheme
does not allow the direct evaluation of radial third derivatives. Examination of the
equation for W [Eq. (23)] shows that such terms appear linearly through &J, ¢s
and &J./Cp. These are handled by the technique of using auxiliary equations.
Thus, for example, the third-order equation,

X=2a¥, 40)
can be written as one first-order plus one second-order equation as

X=d0,2Z, T3

Z=20Y. (42

In the compressible version of FAR, the expressions for J,, J,. and J, are treated
by using auxiliary equations (an equation is added: J,— (¥, y)=01. Two (J,, J:)
are needed to allow the third derivatives to be taken (in Eq. (23)), and the third
{/,) is added simply to treat all J’s in a symmetric fashion. With the implicit
scheme used in FAR [47 for linear calculations, the coding is also much simpler;
if the auxiliary equations were not used, the implicit scheme would require &J,'Cp
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to be evaluated analytically (and coded). This technique is also useful to impose
boundary conditions on quantities like J, since, without the dummy equation, one
does not have direct access to the quantity to impose a boundary condition.
This property of the technique allows the edge boundary conditions on J; to be
consistent with the boundary conditions assumed in the magnetic equations. This
is discussed in Section 4.

An additional consideration is the first-order equation for o (Eq. (18)). Solving
the equation as written by the implicit matrix technique leads to a grid separation
problem. In the FAR code this is solved by making the transformation

a—-o+D, a—a, (43)
ap
where D, is a constant. This change transforms Eq.(18) into a second-order
equation and modifies linear terms in the equations for toroidal flux (Eq. (19)) and
for poloidal flux (Eq.(20)) but otherwise leaves the original set of equations
unmodified. The second-order equation is desirable because the present three-point,
centered numerical scheme evaluates first derivatives at a given grid point by using
the function values only at adjacent grid points. This leads to grid separation. When
a second derivative is evaluated, on the other hand, the values of the function at
three grid points are used; use of the three values couples the grid and alleviates the
problem. This “smoothing” from D, is due to the numerical radial differencing, but
tests have shown that the results are independent of D, over a wide range.
Typically results are obtained with the code using ~ 300 grid points and ~ 10
Fourier components. This number of grid points can be too few for very small
growth rates when a convergence study is needed (i.e., find the growth rate using
several different grid spacings and extrapolate to zero grid spacing in some
reasonable way). The above number of Fourier components can be too few for
some modes. A low » ballooning mode for instance can require ~ 30. Typical time
requirements on a CRAY II computer are a few tens of minutes for a linear result
in toroidal geometry and a few tens of hours for a nonlinear calculation also in
toroidal geometry.

4. BouNDARY CONDITIONS AND ORIGIN BEHAVIOR

The conditions on the unknown quantities at the magnetic axis are found by
requiring that none of the fields, and none of the fields obtained from them by
applying standard vector operators, have singularities at the origin. As in Ref. [4],
this means that, for the scalar fields («, p, and for w) and for the toroidal com-
ponents of vector fields (i = 4., and ¢ = —Q.) the (mn) harmonics must approach
the origin as

oG

Xrn11=p|M| Z alkpy(' (44)

k=0
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For poloidai components (y= —A4, and 4= —,), origin conditions are

[t — 1 :; A
Ymn p Z Ay P ERe

k=0

with the additional constraint that, for m #0, the leading terms of the 5 and &
components satisfy

(ag), = T —= (@o)s- A6

The plus sign is taken for a § component with a cosine series, and the minus sign
is taken when the 8 component has a sine series. in FAR, the scalar fieids p, 2. anc
@ and the vector fields ¢ and ¢ are taken to satisfy Eq.(44}. However, as is
discussed in detail in Ref. [4], 2« is taken to be zero at the origin. The poioica:
vector fields y and A4 are taken to satisfy Egs. (45) and (46). 1t can then be seer tha:
the gauge conditions 4,=0 and &,=0 imply, together with Eq. (47}, that 4, =6
in Eq.(45) when m#0. Hence, y,,~p" "' as the origin is approached and
similarly for 4,,,.

A perfectly conducting wail boundary condition is imposed at the plasma edge
which implies

B, _,=0. (47

This is satisfied by requiring

}73(10’?1" |p =d = nZlVUZ ip =" 48}
The edge values for ¥ and y are time-advanced by
O | Fo (¢ o\ cal .
[ fa(r, 0y, 0]
cr p=a qR o6 [Ny Co fpmy
and
Jy Feq \ ] en
_ — i — 50
arl,_, “aR\ ae q@:/ 26 v
The solutions of Egs. (49) and (50) are consistent with Eg. (48} provided rhat
W mnlyeu=n4,.1,_, Equations (49) and (50) are simply Egs. (19) and 120)

linearized and with J ! ﬁ‘a-—;'g |,-o=0 (as required by a conducting wall). Az

additional boundary condmon implied by the perfectly conducting wall is

Vo o a=0. (51

p=a ) s

For incompressible calculations. Eq. (51) is satisfied in the same manner as
Eqg. {47) is, namely. by requiring

’n¢mn Ip:uzn/lmn [‘a:a' \"-Z'
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For compressible calculations, the additional constraint (see Eq. (33))

‘w 1 dw
g”"—+g"9——> =0 (53)
( dp p b/,

is needed. This separation of the boundary condition, V'*|,_,=0, into two parts
(Eqgs. (52) and (53)) is permitted because of the gauge invariance of the problem.
Equations (49), (50), and (53) give boundary conditions for s, y, and  that are
highly coupled (the boundary value for a given m, n depends on all other m, n
pairs).

For a consistent solution to the problem. the number of boundary values
imposed must be the same as the order of the equation. In Table I, the orders of

TABLE 1

Boundary Values

Linear
Incompressible Compressible
Variable Order Origin Edge Order Origin Edge
17 2 p” Time advanced 3 o™ Time advanced;
Jil,=0
¥ 2 prrt Time advanced 3 pmrl Time advanced;
Il a= 0
b 2 0 Extrapolated 1 0 Extrapolated
A 2 p"th0,4=0  ndl,=mdl, 2 pmtho,A4=0  nd|l,=mdl|,
¢ 2 P ndl, =mg|, 2 P nd|,=md|,
w 2 p™ [g70,0+
g (1p)dyw],=0
p 2 p"l 0
Nonlinear”
Incompressible Compressible
Variable Order Values Order Values

v 1 JY4,=0 0

x 1 J%,=0 0

o 0 0

A { U',=0 1 U",=0

¢ 1 Uil= 1 UH,=0

® 1 V3,=0

P

2 Order and boundary values in addition to those for the linear problem.
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the equations to be solved are given, together with the boundary values imposed.
These boundary values are limited by three constraints: (1} the order of the
equation for each variable (as just mentioned), (2) the perfectly conducting wall
boundary condition that specifies the physics at the boundary, and (3) the time
independence of I’ and B’ at the boundary [8]. The iast condition resulis because
the normal components of the velocity and the magnetic ficld must be zero at the
wall independent of time and thus ¢,V |,_,=2,B"{,_,=0. Since the problem is
formulated in terms of magnetic fluxes and velocity stream functions, one does not
have direct access to V'# and B*.

it can be verified by direct calculation that, for the lincar problem, the boundary
values shown in Table! guarantee the time independence of £ and V7 if
€y Peq |, -o=0. Nonlinearly, only instabilities that have a small perturbation aear
the wall can be studied, which provides no additional physics limitation on this
fixed-boundary conducting wall model. The implementation of these boundary
conditions requires that the solution be formed from a combination of the
homogeneous and inhomogeneous solutions to the discrete matrix form. Fuil
details of this are given in Ref. [4].

Table I shows that the order of the equations and the number of equations
increase when compressibility is included. Since the incompressible equations are 2
particular limit of the fully compressible set (/= oo, their boundary conditions
must be a subset of those for the fully compressible equations. Thus, for instance,
the change from second to third order in ¥ and y as compressible terms ave
included requires two additional boundary values. For consistency, these values ace
imposed on J. |, and J, |, through the new auxiliary equations. This imposition.
turn. is consistent with the assumption used in time-advancing the boundary values
for ¢ and y in the incompressible case. It would be difficult to impose the rew
boundary values in any other manner because they must be included in such a way
that they are not seen by the incompressible problem. If they are seen, the problem
would be overspecified. Since J. and J, are not explicitly required incompressibly,
they satisfy this consideration. They are required compressibly because a third-
order derivative must be taken (see earlier discussion}. The need for the imposition
of two boundary conditions for A at the origin is discussed in detail in Ref 747 anc
thus is not repeated here. The imposition of boundary values required by the
nonlinear terms must also be done in a manner that is consisten! with the linear
problem. That is, the values must be imposed in such a way that, when a linear
calculation is done, it is not overspecified. All the above conditions are satisfied oy
the boundary values shown in Table I

5. Time STEP FOR COMPRESSIBLE CALCULATIONS

As is well known. the addition of compressibility adds the fast Alfvén time scale
to the problem [11-137]. This shorter time scale can require a much smaller time

I ; a i



282 CHARLTON ET AL.

equations and the shorter time step requirement would both, of course, increase the
computational cost of the problem. For linear calculations, the implicit method is
unconditionally stable, and this stability alleviates the need for the smaller time
step. Just as described in Ref. [4], for an incompressible problem, the value of the
time step may be chosen to provide convergence of the mode in a few steps,
independent of the very small time scale behavior. (When the time step is chosen
in this way, it is no longer a time step but serves as a convergence parameter.) This
behavior is illustrated for the compressible problem in Fig 1. The radial and
poloidal velocity are shown, together with the compressible quantities @ and
W=V .V. They are displayed at various times during the evolution for a small time
step that follows the short-time-scale behavior (A¢/t,,=0.5) and for a large time
step (4t/t;p,=15.0) for which the calculation cannot resolve very-short-time-scale
behavior. The time dependence with the small time step is shown on the left, and
that with the large time step is shown on the right. The quantities displayed are
very different at times before the mode became a converged eigenfunction, but they
are the same at the final time shown. The eigenvalues found by the methods of
Ref. [4] are absolutely identical. Thus, the implicit methods described here bypass
the requirement of the small time step in solving the linear problem. The implicit
nature of the numerical algorithm allows the large time step. The short-time-scale
behavior, which is omitted, is irrelevant to the linear eigenfunction since the eigen-
function and eigenvalue are independent of the time step for the values chosen.

ORNL-DWG 88-3165 FED
29— 77 0.68 . 3096 6 m—— 75 0-22 =
| -»/\.f i i .
Vot
S 33 E
vy
RS
N 'R
-6 : -2 0.04 20
575 - 2037 0.24 2527
= -
L
©
S \\\ 23 >
‘\\ J—
-2 . -548  -3.03 -722
14 5 4
>0 - ]
. |
= ' %3 T 3 NS =
. i
o \ -1 -88 2 YY) S W o
39 14 "s 29 260 13
T - ‘
a, i, ® ® |
> \ > 3 > 3 v z
iy
V- )
0 : -3 2317 -8 -5212 )
0 1 0 [
P ; e
A1:0.5 A1=50
D=0 D,:0
¥T1p=0.03530 ¥ Typ=0 03530

CYLINDRICAL
€:0.5 g, 1.0%  qy09 q 2.3

Fic. 1. Comparison between linear time evaluations with 41 =0.5 and 4¢=5 (D, =0). The time is
shown (in units of 7,,) in the center of the figure. W and w are defined in the text.
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CRML-CHS BE-3165

43

793

[w]

CS2IE3C
CYLMmMORICAL
€=0.% So=1.0°fs qG=O,9 q‘::ZZ

Fig. 2. Comparison between linear time evolutions with D ,=0.1 and D ,=0 (3r=0.5). The ©ime
is shown (in units of 74, in the center of the figure. ¥" and w are defined in the text.

For nonlinear calculations, D, is made nonzero {(see Eq.(23)). The term this
introduces has the form of a viscosity that serves to damp the short-wavelength
wave motion introduced when compressibility is included. A comparison is made
between linear calculations done with D =0 and D ,=0.1 in Fig. 2. The damping
of the wave notion is clear. Note that the linear eigenfunctions and growth rates are
identical after a converged eigenfunction is reached. The linear growth rate is shown
in Fig. 3 as a function of D ,. The growth rate corresponding to D, = 10" on the
extreme left of the graph (labeled y,1,p) is identical to that for D, =0. For values
of D,<0.1, the growth of the mode and the structure of rhe linear mode are
unaffected. For the nonlinear calculation shown later using the same equilibrium,
D, =0.1 was used. The asymptotic growth rate (labsled y,75.) is identical to
incompressible growth rate. The structure of the mode also undergoes a transition
from the compressible mode for D, <0.1 to the incompressible mode for B, 2 10°.
As can be seen from examination of Eq. (23), large values of D, yield a resuit in
which W {=V.V) is completely damped, giving an incompressible mode. Thus,
using a2 moderate value for D, in the manner described leaves the linear eigen-
function unchanged in structure (see the bottom of Fig. 2} and in growth (the linear
growth rate is the same). If too large a value of D, is used, however, a:
incompressible linear mode evolves. This technique is somewhat similar to semi-
implicit techniques used by many [12, 13]. The semi-implicit techniques damp the
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FiG. 3. Growth rate vs D ,.

Alfvén waves by effectively canceling the driving term for these waves. They do so
with a nondiffusive method. The method used here is, of course, diffusive but leaves
the linear eigenfunction unchanged.

6. RESULTS

The results presented here are of two different types. The first is a comparison
with previous codes, which serves to validate the FAR code. Codes that evaluate
precisely the same physics as a new code are usually unavailable (if they were
readily available the code would not be written!). Thus, it is necessary to validate
a new code by comparing it with others that are identical only in some limit. The
code FAR, the subject of this paper, solves the complete set of MHD equations in
toroidal geometry. However, one set of comparisons given here is with the fully
compressible, partially implicit, cylindrical-geometry code CYL [147], for both
linear and nonlinear calculations. For the CYL comparison, identical cylindrical
equilibria were used in both codes.

Results are also shown for a comparison with the linear, ideal, toroidal geometry
code ERATO [3]. For the comparisons shown, FAR is run ideally with the
resistive terms turned off. However, many ideal-mode studies have been done by
setting S sufficiently large to make the resistive terms negligible. Thus, the ideal
results can be regarded as either purely ideal calculations or as a limit in which S
is made very large.

The second type of results shown is a comparison between compressible and
incompressible calculations. This comparison is shown to illustrate the capabilities
of the code. A paper describing a detailed study of the effects of compressibility will
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be published in the near future. All the results presented here have been checked for
convergence with respect to the radial mesh and poloidal spectrum (for toroidal
calculations). Extensive details of these types of convergence studies are given in
Ref {47 and thus are not be repeated here.

A comparison between FAR and CYL results is shown for a linear calculation
in Fig. 4. Linear compressible terms were kept in both codes with a cylindrical
equilibrium. The safety factor profile used was

g(p)=4qo [1 + <i>}

with g, =09, A1=2, and p,=0.6521 [4]. A pressure profile given by
) H 7 d" N 2
phr=po| 1-(3) |
V. |
where 1§ is the poloidal magnetic flux and ,, is its value at the plasma edge. The
constant p, was chosen to give fi,=1.0% at the magnetic axis. The equilibrivm
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represented a tokamak plasma with an aspect ratio (¢, = 2na/L, where a and L are
the radius and length of the cylinder, respectively) of 4.0 and a circular cross
section. Shown at the left in Fig. 4 is the eigenfunction given by FAR; on the right
is shown the eigenfunction from CYL, with the three components for (from top to
bottom) the magnetic field, velocity, current density, and vorticity displayed. The
mode is a resistive internal kink. At the bottom is the pressure from each code with
the linear growth rate. As can be seen, both the eigenfunction and the growth rate
for FAR and CYL are virtually identical. As detailed carlier, FAR uses a formula-
tion in terms of magnetic fluxes and stream functions, whereas CYL solves the
primitive magnetic field and velocity equations. FAR must satisfy the conducting
wall boundary conditions on the magnetic and velocity fields through the fluxes
and stream functions, whereas in CYL the relevant boundary values can be

e 1 re Lo L 11 AT o 3% . . 3
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another comparison between the codes is shown for larger m, n (m/n="7/7) and for
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higher f (8,=19.6% ). The other equilibrium parameters were identical to those of
Fig. 4. Again, the eigenfunctions and growth rates are in very good agreement.

A comparison between the nonlinear evolution calculated with FAR and CYL
for a resistive kink is shown in Fig. 6. Compressible effects are included. The
equilibrium is cylindrical and has the same parameters as those for the f,=1%
linear comparison {Fig. 4) except for a smalier aspect ratio {4 =2.0}. Shown is the
m/ir=1/1 magnetic island width vs time. The agreement is quite good. Of courss,
the early growth shows the linear behavior of the two codes.

Figure 7 shows a comparison between the linear growth raies at various inverse
aspect ratios, calculated with the ERATO and FAR codes. The equilibrium used is
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FiG. 8. Comparison between compressible and incompressible cylindrical growth rates from FAR
and CYL.

specified by FF'=0 (where F denotes the major radius times the toroidal magnetic
field and F’ denotes the derivative with respect to the poloidal flux), pressure
proportional to the square of the poloidal flux, 8,=1.0, and g, =0.9. The mode is
an ideal internal kink. As can be noted, the agreement is excellent.

Let us now consider the effect of compressibility on the internal kink (Fig. 8).
The growth rate is shown as a function of ;. The equilibrium parameters are
identical to those given earlier, with 4 =4.0 and p, adjusted to give the desired j,.
Compressible and incompressible growth rates were found as detailed earlier.
Comparisons are shown between growth rates found by use of CYL and FAR. As
for the CYL-FAR comparison shown earlier, the agreement is quite good for all
values of B, and for both compressible and incompressible calculations.

A nonlinear comparison between compressible and incompressible calculations
for a resistive kink in toroidal geometry is shown in Fig. 9. The equilibrium used
was found with parameters identical to those for the f,=1%, 4=4.0 case dis-
cussed earlier except that now the equilibrium has full toroidal effects. Shown is the
m/n=1/1 island width, W, ,, vs time. A complete reconnection has occurred when
W, 1 =90%. The process seen corresponds to the classical Kadomtsev reconnection
when a m/n=1/1 resistive kink leads to the formation of a magnetic island that
grows until it fills the interior of the original g = 1.0 surface. This process has
flattened the g profile inside the original g = 1.0 surface so that ¢ = 1.0 is no longer
in the plasma. Through this relaxation the mode is stabilized. The reconnection
time is slightly shorter for the compressible evolution than for the incompressible.
This is due, for the most part, to the slight difference in linear growth rate. Thus,
the gross behavior of the process is very similar for both compressible and
incompressible evolutions.
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The details of the nonlinear evolution are shown in Figs. 10 and 11. The current
density profiles, pressure profiles, m/n=1/1 helical flux contours, and safety factor
profiles are shown in Fig. 10 at the time when the magnetic island width is 48 % of
the length of the minor radius. The characteristic spike in the current density has
developed with an accompanying flattening of the profile over the region covered
by the magnetic island. The current density profile for the compressible case is very
similar to that for the incompressible case. This is also true of the gross features of
the pressure profiles. The details of the pressure profiles are quite different, however.
For the calculations including compressibility effects, the pressure profile decreases
monotonically through the island region; in the incompressible limit, however, the
pressure profile exhibits a secondary maximum in this region. The resulting
pressure profile for the calculation in the incompressible limit exhibits a great deal
more structure than in the compressible case. The reason for these differences can
be seen in the helical flux contour shown directly below the pressure profiles. The
magnetic island for the incompressible case is much deeper, as shown by the large
number of contours in the island region. The island for the compressible case, on
the other hand, is very shallow, with no contours (indicating that the depth is less
than the difference between the values of the flux on each contour). There is also
more structure in the incompressible case, indicating the contribution is higher m
values. Thus, the pressure, which is an approximate flux surface quantity, shows
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both the effect of the deeper island by having a secondary peak and the effect of the
increased structure in the flux behavior. The safety factor profiles are quite sintiiar,
however, showing the flattening that results as the plasma evolves toward a siate
in which the ¢g=1 surface is removed from the plasma. Thus, there are large
differences in the details of the dynamical evolution for the (wo cases considered.
The features just noted in Fig. 10 (when the island width was 48 %} are also prese=t
but enhanced in Fig. 11 for an island width of 75%. A weil-developad secondary

peak in the pressure profile is now evident for the incompressible case, whereas the

pressure decreases monotonically in the compressible calculation. The pressure sl
exhibits much more detailed structure incompressibly than compressibly. Field line
plots are shown in Fig 12 for the same island widths as in Figs 10 and 1!
(W,.,=48% and W, ,=72%). The field line plots were generated by following
field line around the torus many times, leaving a point as a given peloidal plane is
passed. They generally exhibit the same structure as the my/m=1/1 helical ffux

rantanre Thoe nlnrcad cnirvac Aan tha fiald lina nlate hawavar A nat chaa all saiaiier

[3%)

Fig. 13 for the equilibrium whose nonlinear evolution is shown in Figs. 10-12. Ths
modes are very similar except for the toroidal velocity, which is very differen
particularly in the region inside the ¢ = 1.0 surface.
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7. DISCUSSION AND CONCLUSIONS

The computer code FAR, which performs linear or nonlinear and resistive or
ideal MHD calculations in full toroidal geometry with no ordering assumptions,
has been constructed and validated. The code can be used for either compressible
or incompressible calculations. It uses a fully implicit algorithm for linear calcula-
tions. This permits very efficient linear calculations because a very large step size
can be used which permits fast convergence to the linear eigenfunction. When a
systematic parameter scan is made (so that a good guess for the growth rate is
known), a few “time” steps are sufficient to give converged linear eigenfunctions.

For nonlinear calculations, the nonlinear terms are treated explicitly, which
makes the time step requirement essentially that of an explicit code. In the non-
linear compressible case, however, the short-wavelength wave motion introduced by
the compressibility can be damped without altering the linear behavior. Therefore,
the time step required for nonlinear compressible calculations is nearly the same as
that for incompressible calculations.
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